博客
关于我
[LeetCode] 40. Combination Sum II
阅读量:249 次
发布时间:2019-03-01

本文共 1151 字,大约阅读时间需要 3 分钟。

回溯法是解决组合数问题的一种高效方法。以下是基于回溯法实现的组合数问题解决方案:

#include 
#include
using namespace std;void cb2help(vector
&res, vector
&v, int target, int i, vector
&recp) { if (target < 0) return; if (target == 0) { res.push_back(recp); return; } for (unsigned int k = i; k < v.size(); ++k) { if (k > i && v[k] == v[k-1]) continue; recp.push_back(v[k]); cb2help(res, v, target - v[k], k + 1, recp); recp.pop_back(); if (target - v[k] < 0) return; }}vector
combinationSum2(vector
v, int target) { sort(v.begin(), v.end()); vector
res; vector
recp; cb2help(res, v, target, 0, recp); return res;}

代码主要包含以下几个部分:

  • void cb2help 函数:这是回溯法的核心函数,负责从当前位置开始,尝试所有可能的数值组合。
  • combinationSum2 函数:这是最终的入口函数,负责对数组进行排序并调用回溯函数。
  • 回溯法的实现逻辑:从当前索引开始,遍历所有可能的数值。如果当前数值与前一个数值相同,则跳过;否则,将其加入当前组合,递归调用回溯函数,并在返回时移除当前数值,继续尝试下一个数值。
  • 需要注意的点是:当当前层的数值与前一个数值相同时,会跳过。这样可以避免重复计算相同的组合数。

    回溯法的时间复杂度主要取决于组合数的数量级。如果目标组合数较小,回溯法的效率较高;但如果目标组合数较多,可能会导致性能问题。

    转载地址:http://erfx.baihongyu.com/

    你可能感兴趣的文章
    netty 主要组件+黏包半包+rpc框架+源码透析
    查看>>
    Netty 异步任务调度与异步线程池
    查看>>
    Netty中集成Protobuf实现Java对象数据传递
    查看>>
    Netty事件注册机制深入解析
    查看>>
    Netty原理分析及实战(四)-客户端与服务端双向通信
    查看>>
    Netty客户端断线重连实现及问题思考
    查看>>
    Netty工作笔记0006---NIO的Buffer说明
    查看>>
    Netty工作笔记0007---NIO的三大核心组件关系
    查看>>
    Netty工作笔记0011---Channel应用案例2
    查看>>
    Netty工作笔记0013---Channel应用案例4Copy图片
    查看>>
    Netty工作笔记0014---Buffer类型化和只读
    查看>>
    Netty工作笔记0020---Selectionkey在NIO体系
    查看>>
    Vue踩坑笔记 - 关于vue静态资源引入的问题
    查看>>
    Netty工作笔记0025---SocketChannel API
    查看>>
    Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
    查看>>
    Netty工作笔记0050---Netty核心模块1
    查看>>
    Netty工作笔记0057---Netty群聊系统服务端
    查看>>
    Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
    查看>>
    Netty工作笔记0063---WebSocket长连接开发2
    查看>>
    Netty工作笔记0070---Protobuf使用案例Codec使用
    查看>>